

A Case-Crossover Study of Heat Exposure and Injury Risk in Outdoor Agricultural Workers

June Spector

Departments of Environmental and Occupational Health Sciences (DEOHS) & Medicine

University of Washington (UW) Seattle, Washington

With:

WA Dept of L&I, SHARP Program: David Bonauto, Darrin Adams

UW DEOHS:

Richard Fenske, Lianne Sheppard, Tania Busch-Isaksen, Miriam Calkins

Funding Source: CDC/NIOSH 5K01OH010672-02

Disclosures: None

What's the problem?

1992-2006; US CDC/MMWR 2008

What's the problem?

☆Injury
rate, WA State Fund
workers' comp
claims for fruit/tree
nut farming falls
from elevation:
91/100,000 FTE

What do we know?

Adam Poupart 2015

nean daytime apparent temp, max daily temp

occupational injuries

Potential mechanisms

Exercise-related ♥hydration, ♠core body temp

Vigilance, concentration, balance

May-Sept
2000-2012
mean (range)
max daily temp:
82 (46-107)°F

Gaps we aimed to address

- Outdoor agricultural work
 - Tree fruit harvest

- Potential exposure misclassification
 - Modeled exposure data

• • What we did

Study design: Case-crossover

 Study population: WA State Fund adult outdoor agriculture workers' comp new traumatic injuries, 2000-2012

Modeled/gridded UW Climate Impacts
Group meteorological data:

Where & how we did it

Maurer 2002; https://github.com/geocommons/geocoder/; http://wak.infobaselearning.com/media/10635/Washingtonstate-agri-e.gif

Modeled/gridded UW Climate Impacts Group meteorological

Where & how we did it

data: ~4 x 7.5 km resolution assigned Olympia

Joined to nearest daily max Humidex (~ air temperature, dew point) using Euclidean nearest neighbor approach

Injury lat/long

Maurer 2002; https://github.com/geocommons/geocoder/; http://wak.infobaselearning.com/media/10635/Washingtonstate-agri-e.gif

What we compared

A priori, max daily Humidex (H_{max}) < 25

25-29

30-33

• • What we found

Selected injury claim characteristics (N=12,213)

Characteristic	n(%) or median (IQR)
Age (years): 18-34 35-44 45-54	6,929 (57%) 2,762 (23%) 1,638 (13%)
Male gender	9,468 (78%)
Length of employment (days)	61 (7, 760)

• • What we found

Selected injury claim characteristics (N=12,213)

Characteristic		n(%) or median (IQR)
Age (years):	18-34 35-44 45-54	6,929 (57%) 2,762 (23%) 1,638 (13%)
Male gender		9,468 (78%)
Length of employment (days)		61 (7, 760)
Body part:	Upper extremity Lower extremity	4,717 (39%) 2,709 (22%)
Event/exposure	e: Falls Bodily reaction/exertion	5,893 (48%) 3,947 (32%)

Odds ratios & 95% confidence intervals of workers' compensation injury*

*Adjusted for job tenure

What does it mean?

 risk WA agriculture workers' compensation injuries in warm conditions, particularly when Humidex 30-33 (compared to <25)

What does it mean?

- risk WA agriculture workers' compensation injuries in warm conditions, particularly when Humidex 30-33 (compared to <25)
- Particularly risk during cherry harvest duties, Jun-Jul
 - Early in season, warm
 - Workers more vulnerable?

"Reverse U-shaped" doseresponse relationship

Consistent with other studies

- Better acclimatization when exposures higher?
- Misclassification of exposures at higher exposures (work shifts end earlier)?

What are the implications?

- High risk populations may benefit from combined injury and heat-related illness prevention efforts
- The potential benefits of heat prevention interventions, including policies, should take into account reductions in morbidity, mortality, and costs associated with heatrelated injuries in addition to other heatrelated outcomes

Climate change context: Risk of heat health effects may increase!

Increased frequency & severity of extreme heat events, increased temperatures

High risk industries include agriculture & construction

