

Texas Department of State Health Services

Pesticide Exposure Surveillance in Texas:

Enhancing surveillance data quality through automated real-time quality assurance and control

Western States Occupational Network Meeting, 2018

September 13, 2018 Denver, CO

Disclaimer

Texas Department of State Health Services

We are funded by cooperative agreement U600H011359-02 from CDC-NIOSH. This presentation is solely the responsibility of the authors and does not represent the official views of CDC-NIOSH.

DSHS Pesticide Exposure Surveillance in Texas (PEST)

 Acute Occupational Pesticide Poisoning(AOPP) is a reportable condition in Texas

(Title 25, Texas Administrative Code, Rule §99.1)

- 1986 present
- Laboratories & physicians required to report

Texas Department of State
Health Services

DSHS PEST program

- Conducts follow-up interviews
- If necessary, requests medical records
- Staff uses NIOSH guidelines for coding different variables and case ascertainment

Texas Department of State Health Services

DSHS PEST program

- Maintains an in-house database for data management
 - o SPIDER (until mid-2016)
 - o MS ACCESS, SAS (mid-2016 to present)
 - MS SQL (anticipated 2019 onward)*

Texas Department of State Health Services

DSHS Pest program

- Historically, DSHS conducted manual data quality assurance and quality checks (QA/QC) once a year
 - o QA/QC for data entry and coding errors only
- Submits de-identified data to SENSORpesticide program at NIOSH annually

Texas Department of State
Health Services

Case for Action

- Manual QA/AC on an annual basis is not efficient and effective
- QA/QC did not assess data completeness and timeliness
- Need to identify issues in reporting, case follow-up and coding processes in a timely fashion

Objective

- Develop an efficient and effective method for QA/QC in real-time
- Assess data completeness
- Identify areas of improvement in data collection and coding

Methods: Data aggregation

Step 1:

Import data from an in-house database into SAS

Step 2:

- For selected variables, calculate aggregate count of known
- Create new SAS dataset with year, total counts, percent known values for all selected QA/QC variables

Methods: Data aggregation

Step 2 example, variable sex:

year	total_cases	sex_unknown	pct sex unknown	sex_known	pct sex known
2006	434	8	0.0184331797	426	0.9815668203
2007	388	6	0.0154639175	382	0.9845360825
2008	346	4	0.0115606936	342	0.9884393064
2009	230	0	0	230	1
2010	180	0	0	180	1
2011	280	8	0.0285714286	272	0.9714285714
2012	392	6	0.0153061224	386	0.9846938776
2013	370	11	0.0297297297	359	0.9702702703
2014	384	3	0.0078125	381	0.9921875
2015	482	11	0.0228215768	471	0.9771784232
2016	94	0	0	94	1

Methods: Data visualization in Tableau

Step 1: Connect to aggregate SAS dataset from Tableau

Step 2: Create one sheet per selected variable

Graph percent known (X axis) by year (Y axis)

Methods: Data visualization in Tableau

Step 3: Create a percent known* goal for each variable Goal setting:

- At least 60% records should have industry and occupation known
- At least 95% records should have complete info for demographic and exposure-related variables

Percent of AOPP cases with known sex

Methods: Data visualization in Tableau

• Step 4: Combine all sheets to create dashboard

Results

Tableau QA/QC Dashboard:

https://tabexternal.dshs.texas.gov/t/ENV-EP/views/PESTQAQCDashboard/QAQCDASH?iframeSizedToWindow=true&:e mbed=y&:showAppBanner=false&:display_count=no&:showVizHome=no

QA/QC Results: Age

QA/QC Results: Occupation

QA/QC Results: Industry

Conclusions

 DSHS developed a method for automated QA/QC in real time using Tableau

 This unique, simple, and timely method of QA/QC using Tableau helps address the challenges of manual QA/QC process.

Acknowledgements

Ketki Patel, DSHS Environmental Surveillance and Toxicology Branch

Emily Hall, DSHS Environmental Surveillance and Toxicology Branch

Thank you

For questions or additional info please contact:

Kindle Pierce, MPH

Kindle.Pierce@dshs.texas.gov

512-776-3723

Or visit program website

http://dshs.texas.gov/epitox/OH/