Dehydration Status and Heat Related Symptoms in Florida Farmworkers

Linda McCauley, PhD, RN

Dean and Professor Nell Hodgson Woodruff School of Nursing

Emory University

June 21st 2017

The "Year of Climate Change & Health"

AMERICAN PUBLIC HEALTH ASSOCIATION For science. For action. For health.

"We're committed to making sure the nation knows about the effects of climate change on health. If anyone doesn't think this is a severe problem, they are fooling themselves." --APHA Executive Director Georges Benjamin, in the Washington Post

THE IMPACTS OF CLIMATE CHANGE ON HUMAN HEALTH

IN THE UNITED STATES

A Scientific Assessment

U.S. Global Change Research Program

Climate Change and Health-Extreme Heat

EMORY

SCHOOL OF NURSING

The Impacts of Climate Change on Human Health in the US

Estimated Deaths & Billion Dollar Losses from Extreme Events in the United States 2004–2013

X

EMOR

SCHOOL OF

The Impacts of Climate Change on Human Health in the US

Third National Climate Assessment: Climate Change Impacts in the United States.

Vulnerable Populations

- Factors that Contribute to Exposure
 - Occupation
 - Time spent in risk-prone locations
 - Responses to extreme events
 - Socioeconomic status
 - Infrastructure conditions and access
 - Compromised mobility, cognitive function and other mental or behavioral factors

Academic/Community Partnership

Farmworker Association of Florida La Asociación Campesina de Florida Asosiyasyon Travayè Latè nan Florid

Pregnancy Health Among Florida Farmworkers

Aims

- Examine current perceptions of work hazards
- Assess extent of heat, ergonomic stress, and chemical exposures
- Develop health promotion education materials
- Disseminate results

Heat Related Illness Death

Pregnant Farmworker Dies After Being Denied Shade, Water; Family Calls for Action

Thursday, June 05, 2008 Associated Press

June 2: Josefina Flores, right, carries a photograph of Maria Isabel Vasques Jimenez, an undocumented farm worker who collapsed and died in a vineyard last month because her

conditions on thousands of vineyards and orchards.

LODI, California — The death of a pregnant teenager pruning grape vines in scorching heat has outraged California's farmworking community and sparked calls for safety reforms as laborers prepare for the long summer harvest.

Authorities in California — the only state with a heat-illness standard suspect Maria Isabel Vasquez Jimenez, a 17-year-old undocumented Mexican immigrant, collapsed last month because her farm labor contractor denied employees proper access to shade and water.

On Wednesday, 500 farmworkers and their advocates capped a poignant, four-day march to the statehouse demanding safer

Heat Stress: hot humid work environments

The Girasoles (Sunflower) Study 2014-2018

Centers for Disease Control and Prevention | National Institute for Occupational Safety and Health R010H010657

Five Girasoles Study Recruitment Locations

- Apopka
- Pierson
- Immokalee
- Fellsmere
- Homestead

Heat Related Illness Death

Comprehensive Heat Stress Monitoring

Actigraph monitor records physical activity and amount of movement

Cortemp monitor records the internal temperatures from the pill

Heart rate monitor measures heart beats during work

Home monitor records the overnight temperatures from the home

iButton records the temperature and humidity at your workplace

Demographics of Florida Farmworkers (n= 192); 2015-2016

Characteristic	n (%) or mean ± sd
Age	38.0 ± 8.2
Gender	
Male	76 (40%)
Female	116 (60%)
Nationality	
Mexico	124 (65%)
Guatemala	34 (16%)
Haiti	26 (13%)
United States	3 (2%)
Other	8 (4%)
Years of education	6.5 ± 3.5
BMI	
Male	27.9 ± 4.2
Female	29.2 ± 4.5

Work Characteristics of Florida Farmworkers (n= 192); 2015-2016

Work Characteristics	n (%) or mean ±
	sd
Years worked in agriculture	12.0 ± 7.8
Hours worked per day	7.5 ± 1.5
Primary work type	
Nursery	59 (31%)
Fernery	67 (35%)
Crop	66 (34%)
Drink more of beverage at work	
during hot and humid weather	
Water	188 (98%)
Sports drinks	132 (69%)
Soda	96 (50%)
Juice	74 (39%)
Energy drinks	31 (16%)
Coffee	18 (9%)
Alcohol	4 (2%)

OLOF

Environmental Characteristics on Data Collection Days Across Three Florida Communities 2015-2016

Environmental Characteristics	n (%) or mean ± sd
Ambient temperature (°F)	84.4 ± 3.3
Relative Humidity (%)	73.9 ± 9.6
Mean Heat Index	91.8 ± 5.9

Heat-related Illness: Symptoms

EMORY | NELL HODGSON WOODRUFF SCHOOL OF NURSING

Heat-related Illness: Monitored vs Recall

Figure 1. Frequencies of symptoms reported by farmworkers for previous workweek and during the monitored workweek. (a) By type of HRI symptom. (b) Distribution of 0, 1-2, or 3 or more symptoms

Body Temperature & Heart Rate- Summer

Body Temperature & Heart Rate- Winter

Core Body Temperature

PHASE 1:

This graph shows several issues that commonly arise in our data:

A- Bouncing ball effect

B- Rapid decline/recovery

EMOR

NURSING

 $\langle \mathbf{x} \rangle$

C- Extreme values

D- Gaps

Core Body Temperature

PHASE 2:

Observations from multiple participants for each 30 second time point create a median core temperature estimate.

A smooth curve is generated by these point estimates.

Core Body Temperature

PHASE 3:

Comparison of median core temperatures for each 30 second time point during the workday.

Work hours 5-7 have the most occurrences when the difference between Fernery and Nursery core temperatures are significant.

 \times

EMOR

SCHOOL OF

Dehydration Measures

- Urine Specific Gravity
 - Measure of solute concentration in urine
 - Comparison of water and urine density
 - Measure of kidney function and hydration status
 - USG \geq 1.020 hypohydrated
 - 1.030 > clinically dehydrated

- Serum Osmolality
 - Measure of chemicals dissolved in serum
 - Na⁺, Cl⁻, Bicarbonate, Proteins, Sugars
 - Increases with dehydration
 - 275 to 295 mOsm/kg
 - > 296 dehydrated

Dehydration levels by urine specific gravity

Y WOODRUFF SCHOOL OF NURSING

Dehydration levels by serum osmolality

WOODRUFF SCHOOL OF NURSING

Hydration Status among Florida farmworkers; 2015-2016

Biomarker	Before Work ¹ (n = 190 ²)	After Work ¹ (n=192)	P value ³
USG, mean	1.019 ± 0.005	1.024 ± 0.006	<.0001
USG ≥ 1.020	53%	77%	<.0001
USG > 1.030	5%	15%	<.0001
Serum Osmolality, mean	296.7 ± 3.3	297.1 ± 4.1	.02
Serum Osm > 296	54%	53%	.9

¹n participants for day 1 was n=192, day 2 was n=188 and day 3 was n=175

²based on 555 observations before work and 525 observations after work

³adjusted for number of days worked

Kidney Function Markers among Florida farmworkers; 2015-2016

Biomarker	Before Work ¹ (n = 190 ²)	After Work ¹ (n=192)	P value ³
Serum Creatinine, mean	0.70 ± 0.21	0.81 ± 0.22	<.0001
eGFR, mean	114.6 ± 13.4	104.3 ± 16.5	<.0001
eGFR <90	5%	24%	<.0001
BUN, mean	14.6 ± 4.2	15.8 ± 4.5	<.0001
Serum Potassium, mean	4.4 ± 0.3	4.2 ± 0.4	.003
Serum Sodium, mean	140.9 ± 1.4	141.1 ± 1.7	<.0001

¹n participants for day 1 was n=192, day 2 was n=188 and day 3 was n=175 ²based on 555 observations before work and 525 observations after work ³adjusted for number of days worked

Girasoles Community Engagement

- Dissemination of results to community
- Outreach to provide care for participants
- Training promotoras
- Community Advisory Board
- Health screenings
- Clinician handouts
- Focus groups

Participants Health Education

- Body composition information (BMI, body fat)
- Blood pressure reading
- Approximate highest internal temperature
- On-site blood analysis reports

Information Addresses

- Heat prevention practices
- Warning signs
- Recommended ranges for BMI and blood sugar

SALUD

La grasa corporal _____ La presión arterial

Alta temperatura _____ Indice de masa corporal

Indice de masa corporal

<18.5 Bajo de peso 18.5-24.9 Normal 25-29.9 Sobrepeso 30+ Obesidad

La diabetes es una enfermedad en la que el exceso de azúcar en el cuerpo conduce a problemas de salud.

Azúcar en la sangre recomendada <200

El estrés por calor señales de advertencia:

Control y Prevención

Mantenga un peso (IMC) normal Perder 7% del peso corporal (For BMI > 25) Evitar los alimentos azucarados Ejercitar 30 minutos 5 días a la semana Consulte a su médico si experimenta síntomas de insolacion

Qué hacer

Sudor excesivo Respiración rápida

Debilidad

Mareos

Náuseas

Vómitos

Calambres

Fatiga

Trasladarse a una zona más fresca o con sombra Sentarse Beber agua o bebidas deportivas Ventile y aplique agua fría al cuerpo

Endèks Mas Kò

<18.5 Mèg 18.5 - 24.9 Nòmal 25 - 29.9 Twò gwo 30+ obèz

Dyabèt se yon maladi kote twòp sik nan kò a mennen lot pwoblèm sante Nivo sik nan san rekòmande

< 200

Avètisman siy estrès chalè

Swe anpil Respire rapid Feblès Vètij Fatig Kè plen Vomisman

Kisa pou fe deplase nan pi fre, zòn fonse chita bwè dlo oswa espò bwè fanatik ak aplike dlo fre nan kò

Kontwòl ak prevansyon

Rete nan nòmal EMK Pèdi 7% nan pwa kò Evite manje ki gen sik Egzèse 30 minit senk jou nan yon semèn Konsilte doktè ou si experimante sentòm

Farmworker Community Demographics

- Age
- Gender
- Race/Ethnicity

Farmworker Risk Factors

- BMI
- Blood pressure
- Serum analysis
- Max core temperature during workday
- Average dehydration levels
- Reported HRI symptoms

Participant Referrals In Apopka Summer 2016

SCHOOL OF NURSING

Future Directions

- Interventions, interventions, interventions...
- Mesoamerican Nephropathy

Acknowledgements

- Farmworkers Association of Florida
 - Jeannie Economos
 - Joan Flocks, JD
 - Antonio Tovar-Aguilar, PhD
 - Nezahualcoyotl Xiuhtecutli, MS
- Emory University
 - Roxana Chicas, BSN, RN
 - Lisa Elon, MS
 - Vicki Hertzberg, PhD, FASA, P. Stat
 - Valerie Mac, PhD, RN
 - Jacqueline Mix, PhD, MPH
 - Abby Mutic, MSN
 - Nathan Mutic, MS, MAT, MEd
- Funders
 - NIOSH R010H010657
 - NIOSH R21 OH009830-01

References

- USGCRP, 2016: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Crimmins, A., J. Balbus, J.L. Gamble, C.B. Beard, J.E. Bell, D. Dodgen, R.J. Eisen, N. Fann, M.D. Hawkins, S.C. Herring, L. Jantarasami, D.M. Mills, S. Saha, M.C. Sarofim, J. Trtanj, and L. Ziska, Eds. U.S. Global Change Research Program, Washington, DC, 312 pp. http://dx.doi.org/10.7930/JOR49NQX
- https://www.apha.org/topics-and-issues/climate-change
- Gutierrez KS, LePrevost CE. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health. Tchounwou PB, ed. International Journal of Environmental Research and Public Health. 2016;13(2):189. doi:10.3390/ijerph13020189.
- Roncal-Jimenez C.A., García-Trabanino R., Wesseling C., Johnson R.J. Mesoamerican nephropathy or global warming nephropathy? Blood Purif. 2016;41:135–138. doi: 10.1159/000441265
- Ramón García-Trabanino, Emmanuel Jarquín, Catharina Wesseling, Richard J Johnson, Marvin González-Quiroz, Ilana Weiss, Jason Glaser, Juan José Vindell, Leo Stockfelt, Carlos Roncal, Tamara Harra, Lars Barregard
- Flocks J, Kelley M, Economos J, McCauley L. Female farmworkers' perceptions of pesticide exposure and pregnancy health. Journal of immigrant and minority health / Center for Minority Public Health. 2012;14(4):626-632.
- Flocks J, Vi Thien Mac V, Runkle J, Tovar-Aguilar JA, Economos J, McCauley LA. Female farmworkers' perceptions of heat-related illness and pregnancy health. Journal of agromedicine. 2013;18(4):350-358.
- Kelley MA, Flocks JD, Economos J, McCauley LA. Female farmworkers' health during pregnancy: Health care providers' perspectives. *Workplace Health Saf.* 2013;61(7):308-313.
- Runkle J, Flocks J, Economos J, Tovar-Aguilar J, McCauley L. Occupational risks and pregnancy and infant health outcomes in florida farmworkers. International journal of environmental research and public health. 2014;11(8):7820.
- Runkle J, Tovar-Aguilar JA, Economos E, Flocks J, Williams B, Muniz JF, Semple M, McCauley L. Pesticide risk perception and biomarkers of exposure in florida female farmworkers. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine. 2013;55(11):1286-1292.
- Campbell, K. The association of skin rashes with work environment, personal protextive equipment and hygiene practices in female farmworkers. AAOHN Workplace Health & Safety. Accepted.
- Vi Thien Mac V, Tovar-Aguilar JA, Flocks J, Economos J, Hertzberg V, McCauley LA. Heat exposure in central florida fernery workers: Results of a feasibility study. Journal of Agromedicine. 2017.
- Hertzberg V, Mac V, Elon L, Mutic N, Mutic A, Peterman K, Tovar-Aguilar JA, Economos E, Flocks J, McCauley L. Analysis of real-time physiologic monitoring data in the research setting. (2017.) West J Nurs Res.

Appendix

Serum creatinine

- 31% of participants had at least one workday with serum creatinine above sex-specific limits OR an increase of >= 0.3 mg/dL on at least one workday
- Sex specific limits:
 - Males: >1.3 mg/dL
 - Females: >1.1 mg/dL

Acute Kidney Injury (AKI)

• Kidney Disease Improving Global Health Outcomes (KDIGO) criteria is based on serum creatinine change

AKI present	Increase of post-shift serum creatinine by at least 0.3 mg/dL OR ≥ 1.5 times the pre-shift creatinine
AKI stage 1	≥ 0.3 mg/dL increase in serum creatinine OR 1.5 to 1.9 times the pre-shift creatinine
AKI stage 2	2.0 to 2.9 times the pre-shift creatinine
AKI stage 3	≥ 3.0 times the pre-shift creatinine

AKI in Girasoles

Presence of AKI:

- 33% of participants had the criteria indicating AKI on at least one workday
 - 28% on one workday
 - 4% on two workdays
 - 1% on three workdays

Stages of AKI:

- 26% had stage 1 AKI on at least one workday; 3% on two; 0.5% on three
- 3% had stage 2 AKI on at least one workday
- 0.5% had stage 3 AKI on at least one workday

Normal ranges/cutoff value for hydration and kidney markers

MARKER	Normal Range/Cutoff valuye for Adults
Hydration markers	
Urine specific gravity (USG)	USG <1.015: euhydrated
Serum osmolality	275-295 mOsm/kg
Kidney function markers	
Serum creatinine	Males: <1.1 mg/dL Females: <1.3 mg/dL
Estimated glomerular filtration rate (eGFR)	>90 ml/min/1.73m ²
Blood urea nitrogen (BUN)	10-20 mg/dL
Serum potassium	3.5 – 5.2 mEq/L or 3.5 – 5.2 mmol/L
Serum sodium	136 – 145 mEq/L